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Abstract

Although full wave electromagnetic systems are large and cum-

bersome to solve, typically only a few parameters, such as inpul

impedance, S parameters, and far field pattern, are needed by' the

designer or analyst. A reduced order modeling of these parameters is

therefore an imt)ortant consideration in minimizing the CPU require-
ments. The Asymptotic Waveform Evaluation(AWE) method is one

approach to construct, a reduced order model of the inpul impedance

or other useful electromagnetic parameters. We demonstrate its appli-

cation and validity when used in conjunction with the finite element

method to simula.te full wave electromagnetic problems.

1 Introduction

The method of Asymptotic Wa.veform Evaluation (AWE) provides a. reduced-

order model of a linear system and has already been successfully used in VLSI

and circuit analysis to approximate the transfer function associated with a

given set of ports/variables in circuit networks [1, 2, 3]. The basic idea of

the method is to develop an approximate transfer function of a given linear

system from a limited set of spectral solutions. Typically, a Pa.db expansion

of the transfer function is postulated whose coefficients are then determined
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l,\ ))la1<'}li)l_tlw Padb r('l)resenialh)ikio (he availableN)(,('Tral_olil(io)t>,of
l Jie cotill)let(" svsl('lii.

In tiiis [)al)er we investigate tile +ultal)ililv of Iiie .+\\V]'] Inelhod for ali-

t)r()×inlalin_ lli(, response of a +iveli t)araiiiet(,r ill full wa\'(, siniulatlt)iis t)f

radlalion or s('atteriti_; l)robleni+ in eleclromagnetics. Of I)ariicular iiil(,rc,q

is Ill(' IlSe of A\\I'] for evaluating tll(. h/l)ul inll)edanc(" of til(' alll('lllla O\'('1+ ii

_i\'('n t)an(twidth fronl a kllowledge of the full wave +olulioll al a few (('V('II a

<dn<e;h')fr('(lllelir.v points. Also. the rneliiod call 1)(' llS(,(] to fill ili a ])a(-kscal-

lerillg ])allerli wiiil r('spect to frequelicy using a Pew data sanli)lt's of i]lal

])all(,l'il. }lelo\v we first descril)e the recasting o[" the l"l']M s\'slenl for a]>

l)]icallon of the Att'}'_,. \{'e tlien proceed t,o describe the ..\\\'[ nlelliod alid

den ionsirate iis al)i)licalion, accuracy and efficiency iii conlpuling lhe iil])ui

illll)edalice of a shielded microstrip stub.

2 Theory of Asymptotic Waveform Evalua-

tion

2.1 FEM System

The application of the finite element method to full wave electromagnetic

solutions amounts to generating a, linear system of equations by exl.renfizing

the functional [4]

.T" =< V × E,_. V × E > -k 2 < E,77. E > +kb.t. (1)

where <. > denotes an inner-product and b.t. is a possible boundary l,el'm

whose specific form is not required for this discussion. Also, the dyadics

and ei_are material related coefficients, k - 2rr _ w is the wavenumber and
c

,_, is the corresponding operating frequency with c being the speed of light.

A discretized form of (1) incorporating the appropriate boundary conditions

is [5]

A0 +/cA, + k2A2) {X} = {.f} (2)

where A_ denote the usual square (sparse) matrices and {.f} is a colu,n,,
matrix describing the specific excitation.



('lcavlx I )) <at, i,c solved usin_ _lirc<t or itcratix<, nlel]a_<ls tor a _i\+_'t_
xaJm' of ttJ_, wa',cllun]l_er. Even t]lou_h A_ i,'. sparse, t}l_, so]utioll of t}l_.

s',stem (2) is con_putationa]iv il]teI|SiV(' arid Hltlst h,c rel)eat+,(i for <,ac]l /,"

to <>l)taina freqlmncv resl)onsc.:_lso.certain_na]\'_c_aild¢l<'sigtlsnlav r<'-

quire both l<'tlll>oral and frequency responses plachlg additional coltll>Ula-

tional lint<lens at_<l a repeated solution of (2)is I]O| all effi<'ient approach ill

general ing lhesc rcsl)<mses. An al>i>li<'at ion of A\\'E Io achieve an al>lm>xinla-

1loll to these rcsl)<ms<,s is an at tra<-I ire alternat ix,<.. Below we ['ormulale .\\\'I';

il_ <'<)t_iuJ,('tio,_ will, t],<' finit(' el(']tl('n_ n_etl_<><t (2). for n}o<l('ling an1('l,],a atl<I

n_icr<>wax'e circuil i.,rol>l<.lns. For these l)rc, hlems. II+<'('x<'ila_i<m <'ol_t_ittt {,/}
is a linear ftt_cti<m of the vcavetmml>er al_<lcan therefore I_cstaled as

{,f} = /,"{,f, } (3)

with {./'_ } being independent of frequency. This observation will I>c sl>ecifi-

tally used in our subsequent presentation.

2.2 Asymptotic Waveform Evaluation

To <l<,scril)e the basic idea of AWE in conjunction with the FEM. we hegitl

I)y first expanding the solution {X} in a Taylor series about k0 as

{.v} = {.re}+ (_ - _o){x,} + (a-- _o)_{.\'_}+...
+(_.-- _o)'{-\',}+ o {(_- a_o)'+J} (4)

where {-¥0} is the solution of (2) corresponding to the wavenumber k0. By

introducing this expansion into (2) and equating equal powers of/+ in con-

junction with (3), after some manipulations, we find that

{-re}

{-_'1 }

{.v,}

= koAo I {.f_}

= Ao t [{f,} - A, {Xo} - 2koA; {Xo}]

: -A o' [A, {X_} + A_({Xo} + 2ko {X,})]

= -Ao I [al <XI-I } -Jr- A2( {X.__,} q- 2/_o {XI-I } )]

with

_2Ao = Ao + koAt + koA2 (_)



]'[XlJi'('SSiOIl_, (7)) al'(' referred to as llie svslClll lilt)till'ill> Wlll'lX';-i_- I(i) i_, ilia,

<,\<_I_'111 al llic ln'e_cliltcd \va\ClilllllltCl lA'0). .\lill<Ju_)l all exl>liuil ili\<'r_i_>li

of A(7 1 lllav It+' llc('ded as illdical_'d ill (."1). ihi_ illVt'lSiOli i.,, us('(1 r('lical(,(ll\

alid <'all lhlls It<, slored +)lll Of +'Ol'e fol' llle ]niplcnlenlalion of .\\VI'[. Also.

Kivcli thal for ]llpilt impedance CoUlplllal]ollS iv(, arc lyl>icall.v inleicslcd ili

lh_' Held \'ahie al one location of the coui])ulat]oliaI dolllaill. OlliV a sili_l_'

entr\" of {.\'#(/_')} need be considered, say (the pth enlry) .\'J'(/,'). The al>oxe

lli()ll/+'IllS +'all then lie reduced to scalar foiTU and llic cxpansioiis (.'l)}tCCOllll,

a scalar rel)resenlalion of X/s>(/,') ahout tile correspoud]llg solution al 7,'o. lo

vMd a lll()l'(' COIIVCI'gOill expression, we Call inslead l'f-"¢erl IO a Padb eXliaiisioli
which is a conveliliOllal raliona] function.

];'OI" ll'allSielll analysis ill(" Padb expansion (tall t)+' casl ])v parlial fraclion

decotnl)oSition [3. 6] into

q
7"z"

=-K0+ Z
i=l

(7)

where -\'v0 is lhe linliling vahie a,s k tends to infinity. This is a qlh order

represenl, al, ion alld is suitable for t, iltl_e/frequency domain trallsforlnal iOll. As

can I)e realized, the residues and poles (ri and /*'0 +/,'i) in (7) corresl)on(t

to those of the original physical svstem and play importanl roles in lhe

accuracy of the approximation. As can be expected a higher order exl)ansion

with more zeros and poles can provide an improved al)proximation. T]ie

accuracy of AWE relies on the prediction of the dominant, residues and poles

located closest, to k0 in a. complex plane. Its key advantage is that for many

practical electromagnetic problems only a few poles and zeros are needed for

a sufficiently accurate representation.

For a hybrid finite element - boundary integral system; the implemenla-

tion of AWE is more involved because the fully populated boundary integral

subniatrix of the system has a. more complex dependence on frequency. In

this case we may instead approximate the full submatrix with a spectral

expansion of the exponential boundary integral kernel to facilitate the ex-

traction of the system moments. This approach does increase the complexily

in implementing AWE. However, AWE still remains fa.r more efficient ill

terms of CPI7 requirements when compared to the conventional approach of

repeating the system solution at each frequency.



3 Numerical Implementation

.-\s an _i>i)licat ion of .-\x,Vl'_ 1o a fu]l wave elect ronm_nct is siltlulat iot,. v,c ct),j-

sM<'r th<' <',.'al,lat iot, of tile ittl)ul itnF,(,dancc for a nlicro.'<t ril) st ul) >,llh'l(h,d itl _

Jll('talli( r,+'('1+_t+gular ca\'it\ as sltown itl [igur(' i. The +,.+lul)'s it,put itl+l>edatlc<.

+s _ st t'ot,g fttnct iO]l ()f frequency from ] :+ (;If× _n(-I this ,_,xatttl)l(, is tllcrcf'or(.

a good <h'monstrat ion of A\VE's capabilitv.

The slli++l(led <-'_vit v is 2.38c+I+ × 6.00<'m x t.()G<'711 in size and ill(' ttli('rost ril)

stub resi(les on a 0.:IS(riP thick sut)strate having a dielectric constant of :_;.:2.

Th(" stul) is 0.7.9c7n v,'Me and A/2 long at 1.785 GHz and v,'(+ llol<, that tlle

back wall of the cavity is t('rminated t)v a metal-1)acked artificial al)sorl)er

hax'it_g relative constants of (,. = (3.2.-3.2) and /l_= (1.0.--l.0).

As a reference solution, the frequency response of the shielded stub was

first cornl)Ute(I fronl 1 to :+ (;Hz at 40 MHz intervals (50 points) llsing a full
wave finite element solution. To (lemonstrate the efli('a('v and accuracy of

AWl:, we chose a single input impedance solution at 1.78 Gllz in conjttnction

with the 4ill order and 8th order AWE in (7) to approxinlal.(+ the system

resl)otlse. Clearly the chosen number of poles or order of the expansion leads

t.o dift'erent accuracies. As seen in Figure 2, the 4th order AWE rel)resenta-

tion is in agreement with the real a.nd reactive parts of the reference int)nl

impedance solution over a 56% and aa<7(,bandwidth, respectively. Surpris-

ingly, the 8th order AWE representation recovers the reDrence solul.ion over

the entire l-a (;Hz hand for both the real and reactive l)arts of the impedance.

However, the CPI: requirements for the 4th and 8th order al)proximat.ions

are nearly the same except+ for a few more matrix vector products needed lot"

the higher order expansion. The number of these operations are of the same

order as that of the AWE expansion and are much smaller than the size of

the original numerical system.

We conch_Me that the AWE representation is an extremely useful addition

to electromagnetic simulation codes and pa+ckages for computing wideband

frequency responses using only a few samples of the system solution.
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Figure 3: Results of the 4th and 8th order AWE implementation using a

single point expansion at 1.78 GHz. (a) Real part and (b) imaginary part of

the Input impedance




